If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+36x-600=0
a = 2; b = 36; c = -600;
Δ = b2-4ac
Δ = 362-4·2·(-600)
Δ = 6096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6096}=\sqrt{16*381}=\sqrt{16}*\sqrt{381}=4\sqrt{381}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{381}}{2*2}=\frac{-36-4\sqrt{381}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{381}}{2*2}=\frac{-36+4\sqrt{381}}{4} $
| 125=c-68 | | -65=-5+c | | 1/2(8x-14)=31 | | 71/2m=87/8 | | (3x+17)+4(x-3)=180 | | 1/4x+40=T | | 5f2f=1 | | 52=4x+6(2x+30) | | -248y=-108 | | 5=w÷12.5 | | 4x+6(2x+30)=52 | | 5*g=30-6 | | 33x+25=33x+-33 | | 33x+25=33x+33 | | 33x+25=33x+-25 | | 8x+-50-15x+2=19 | | 3(x-1)+4-2x=2 | | 4x1=60 | | d=4.5 | | 13=10+z | | 0=3t^2-26t | | 3(z+5=2z+15+z | | 5(x+2)=3x+8) | | 8p-7p=2 | | 7x+3=4x−9 | | y+y=180-8y | | X+2=2(5x-3) | | 19*(x+3)-3=111 | | 6x-3+9x=5x+3 | | -7(-3x-2)-2x=-4x | | 5x^2+39x+72=0 | | 3(-6x-8)=-4x |